MATH 4000-PROBLEM SOLVING FOR PUTNAM, FALL 2019 HOMEWORK NO. 3

LECTURER: CEZAR LUPU

Problem 1. Let (G, \cdot) be a group such that $(a b)^{2}=a^{2} b^{2}$, for all $a, b \in G$. Show that G is an abelian group.
classic
Problem 2. Let R be a ring with identity with the property that $(x y)^{2}=x^{2} y^{2}$ for all $x, y \in R$. Show that R is commutative.

some old Romanian olympiad

Problem 3. Show that a finite group cannot be the union of two of its proper subgroups. Does the statement remain true if "two" is replaced by "three"?

Putnam B2, 1969
Problem 4. Let $A \in M_{2}(\mathbb{R})$ such that $\operatorname{det} A=-1$. Show that $\operatorname{det}\left(A^{2}+I_{2}\right) \geq 4$.

RNMO SL, 2003
Problem 5. Let $A, B \in M_{2}(\mathbb{R})$. Show that

$$
\operatorname{det}\left(A^{2}+B^{2}\right) \geq \operatorname{det}(A B-B A)
$$

RMO, 2003

Problem 6. Let $A \in M_{3}(\mathbb{C})$ such that $\operatorname{tr}(A)=\operatorname{tr}\left(A^{2}\right)=0$. Show that if $|\operatorname{det} A|<1$, then the matrix $I_{3}+A^{n}$ is invertible for all $n \geq 1$.

RMO, 2002
Problem 7. Let $A, B \in M_{3}(\mathbb{C})$ such that $(A B)^{2}=A^{2} B^{2}$ and $(B A)^{2}=B^{2} A^{2}$. Prove that $(A B-B A)^{3}=O_{3}$.

RNMO SL, 2014
Problem 8. Are there any matrices $A, B \in M_{3}(\mathbb{C})$ such that $(A B-B A)^{2}=I_{3}$?
Problem 9. For $n \geq 1$, let d_{n} be the greatest common divisor of the entries of $A^{n}-I_{2}$, where

$$
A=\left[\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right]
$$

Show that $\lim _{n \rightarrow \infty} d_{n}=\infty$.
Putnam B4, 1994
Problem 10. Let A, B be matrices of size 3×2 and 2×3 respectively. Suppose that their product in the order $A B$ is given by

$$
A B=\left[\begin{array}{ccc}
8 & 2 & -2 \\
2 & 5 & 4 \\
-2 & 4 & 5
\end{array}\right]
$$

Show that the product $B A$ is given by

$$
B A=\left[\begin{array}{ll}
9 & 0 \\
0 & 9
\end{array}\right]
$$

Putnam B1, 1969
Problem 11. Let A be an $m \times n$ matrix with rational entries. Suppose that there are at least $m+n$ distinct prime numbers among the absolute values of the entries A. Show that the rank of A is at least 2 .

Putnam B3, 2014
Problem 12. Let A be the $n \times n$ matrix whose entry in the i-th row and j-th column is

$$
\frac{1}{\min (i, j)}
$$

for $1 \leq i, j \leq n$. Compute $\operatorname{det}(A)$.
Putnam A2, 2014
Problem 13. Let A, B be different $n \times n$ matrices with real entries. If $A^{3}=B^{3}$ and $A^{2} B=B^{2} A$, then can $A^{2}+B^{2}$ be invertible?

Putnam A2, 1991
Problem 14. A and B are square complex matrices of the same size and

$$
\operatorname{rank}(A B-B A)=1
$$

Show that $(A B-B A)^{2}=O_{n}$.
IMC, 2000
Problem 15. Let M be a real $n \times n$ matrix with all entries in $\{0,1\}$ such that all eigenvalues are positive. Prove that all eigenvalues are equal to 1 .

Problem 16. Let $A \in M_{n}(\mathbb{R})$ such that $|\operatorname{tr}(A)|>n$. Show that $A^{k} \neq A^{p}$ for all k, p positive integers with $k \neq p$.

Putnam B3, 2001
Problem 17. Let $A \in M_{n}(\mathbb{C})$ such that $\operatorname{tr}\left(A^{k}\right)=0$ for all $1 \leq k \leq n-1$, and $\operatorname{tr}\left(A^{n}\right)=n$. Show that $A^{n}=I_{n}$.
classic
Problem 18. Let $A \in M_{n}(\mathbb{R})$ such that $A^{3}=A+I_{n}$. Show that $\operatorname{det}(A)>0$. classic

Problem 19. Let $N \in M_{n}(\mathbb{C})$ be a nilpotent matrix. Show that
(i) $\operatorname{det}\left(I_{n}+N\right)=1$.
(ii) $\operatorname{det}(A+N)=\operatorname{det}(A)$, for any matrix $A \in M_{n}(\mathbb{C})$ such that $A N=N A$.

IMC, 1998
Problem 20. . Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ be a symmetric $n \times n$ matrix with real entries and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ denote its eigenvalues. Show that

$$
\sum_{1 \leq i<j \leq n} a_{i i} a_{j j} \geq \sum_{1 \leq i<j \leq n} \lambda_{i} \lambda_{j},
$$

and determine all matrices for which equality holds.
IMC, 2014

