MATH 4000-PROBLEM SOLVING FOR PUTNAM, FALL 2019 HOMEWORK NO. 2

LECTURER: CEZAR LUPU

Problem 1. Let $x_{1}, x_{2}, \ldots, x_{7}$ be real numbers. Show that there exists $i, j=$ $1,2, \ldots, 7$ distinct such that

$$
\left|\frac{x_{i}-x_{j}}{1+x_{i} x_{j}}\right| \leq \frac{1}{\sqrt{3}} .
$$

some old Putnam exam
Problem 2. Let there be given 9 lattice points (points with integral coordinates) in 3-dimensional Euclidean space. Show that there is a lattice point on the interior of one of the line segments joining two of these points.

Putnam A1, 1971
Problem 3. Let A be any set of 20 distinct integers chosen from the arithmetic progression $1,4,7, \ldots, 100$. Prove that there must be two distinct integers in A whose sum is 104 .

Putnam A1, 1978
Problem 4. (a) Prove that there exist integers a, b, c, not all zero and each of absolute value less than one million, such that

$$
|a+b \sqrt{2}+c \sqrt{3}|<10^{-11}
$$

(b) Let a, b, c, not all zero and each of absolute value less than one million. Prove that

$$
|a+b \sqrt{2}+c \sqrt{3}|>10^{-21}
$$

Putnam A4, 1980
Problem 5. Prove that, for every set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of n real numbers, there exists a non-empty subset S of X and an integer m such that

$$
\left|m+\sum_{s \in S} s\right| \leq \frac{1}{n+1}
$$

Problem 6. Let $d_{1}, d_{2}, \ldots, d_{12}$ be real numbers in the open interval $(1,12)$. Show that there exist distinct indices i, j, k such that d_{i}, d_{j}, d_{k} are the side lengths of an acute triangle.

Putnam A1, 2012
Problem 7. Recall that a regular icosahedron is a convex polyhedron having 12 vertices and 20 faces; the faces are congruent equilateral triangles. On each face of a regular icosahedron is written a nonnegative integer such that the sum of all 20 integers is 39 . Show that there are two faces that share a vertex and have the same integer written on them.

Putnam A1, 2013
Problem 8. Prove that the expression

$$
\frac{\operatorname{gcd}(m, n)}{n}\binom{n}{m}
$$

is an integer for all pairs of integers $n \geq m \geq 1$.
Putnam B2, 2000
Problem 9. Let n be a positive integer such that $n+1$ is divisible by 24 . Prove that the sum of all the divisors of n is divisible by 24 .

Putnam B1, 1969
Problem 10. Prove that

$$
\binom{p a}{p b} \equiv\binom{a}{b}(\bmod p),
$$

for all integers p, a, b, with p prime, $p>0$, and $a \geq b \geq 0$.
Putnam A5, 1977
Problem 11. Let $a_{0}=1, a_{1}=2$, and $a_{n}=4 a_{n-1}-a_{n-2}$ for $n \geq 2$. Find an odd prime factor of a_{2015}.

Putnam A2, 2015
Problem 12. Show that if n is an integer greater than 1 , then n does not divide $2^{n}-1$.

Putnam A5, 1972
Problem 13. Let p be a prime greater than 3. Prove that

$$
p^{2} \left\lvert\, \sum_{i=1}^{\left\lfloor\frac{2 p}{3}\right\rfloor}\binom{p}{i}\right.
$$

Problem 14. Let p be an odd prime. Show that the equation $x^{2} \equiv-1(\bmod p)$ has a solution if and only if $p \equiv 1(\bmod 4)$.
some old Putnam exam
Problem 15. For any positive integer n, let $\langle n\rangle$ denote the closest integer to \sqrt{n}. Evaluate:

$$
\sum_{n=1}^{\infty} \frac{2^{\langle n\rangle}+2^{-\langle n\rangle}}{2^{n}}
$$

Putnam B3, 2001
Problem 16. Define a positive integer n to be squarish if either n is itself a perfect square or the distance from n to the nearest perfect square is a perfect square. For example, 2016 is squarish, because the nearest perfect square to 2016 is $45^{2}=2025$ and $2025-2016=9$ is a perfect square. (Of the positive integers between 1 and 10 , only 6 and 7 are not squarish.)

For a positive integer N, let $S(N)$ be the number of squarish integers between 1 and N, inclusive. Find positive constants α and β such that

$$
\lim _{N \rightarrow \infty} \frac{S(N)}{N^{\alpha}}=\beta
$$

or show that no such constants exist.
Putnam B2, 2016

