MATH 4000-PROBLEM SOLVING FOR PUTNAM, FALL 2019 HOMEWORK NO. 1

LECTURER: CEZAR LUPU

Problem 1. Find the minimum value of

$$
\frac{(x+1 / x)^{6}-\left(x^{6}+1 / x^{6}\right)-2}{(x+1 / x)^{3}+\left(x^{3}+1 / x^{3}\right)},
$$

for $x>0$.
Putnam B1, 1998
Problem 2. Let $a, b, c>0$. Show the following inequalities

$$
\begin{gathered}
(a+b)(b+c)(c+a) \geq 8 a b c \\
(a+b)(b+c)(c+a) \geq \frac{8}{9}(a+b+c)(a b+b c+c a), \\
a^{3}+b^{3}+c^{3} \geq \frac{(a+b+c)^{3}}{9},
\end{gathered}
$$

and

$$
3\left(a^{3}+b^{3}+c^{3}\right) \geq(a+b+c)\left(a^{2}+b^{2}+c^{2}\right)
$$

Problem 3. Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be nonnegative numbers. Show that

$$
\sqrt[n]{a_{1} a_{2} \ldots a_{n}}+\sqrt[n]{b_{1} b_{2} \ldots b_{n}} \leq \sqrt[n]{\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \ldots\left(a_{n}+b_{n}\right)}
$$

Putnam A2, 2003
Problem 4. Let $x_{1}, x_{2}, \ldots, x_{n}>0$ and $\alpha_{1}>0, \alpha_{2}>0, \ldots, \alpha_{n}>0$. Show that

$$
\frac{x_{1}^{2}}{\alpha_{1}}+\frac{x_{2}^{2}}{\alpha_{2}}+\ldots+\frac{x_{n}^{2}}{\alpha_{n}} \geq \frac{\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{2}}{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{n}} .
$$

special case of the Cauchy-Schwarz's inequality
Application. Show that for any positive reals a, b, c we have

$$
\sum_{c y c} \frac{a}{b+c} \geq \frac{3}{2}
$$

Problem 5. Find all positive integers n, k_{1}, \ldots, k_{n} such that $k_{1}+\cdots+k_{n}=5 n-4$ and

$$
\frac{1}{k_{1}}+\cdots+\frac{1}{k_{n}}=1
$$

Putnam B2, 2005

Problem 6. Let $z=x+y \cdot i$ be a complex number with x, y rational numbers and with $|z|=1$. Show that the number $\left|z^{2 n}-1\right|$ is rational for every positive integer n.

Putnam B2, 1973
Problem 7. Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are real $(n>1)$ and

$$
A+\sum_{i=1}^{n} a_{i}^{2}<\frac{1}{n-1}\left(\sum_{i=1}^{n} a_{i}\right)^{2}
$$

Prove that $A<2 a_{i} a_{j}$ for $1 \leq i<j \leq n$.
Putnam B5, 1977
Problem 8. Let m, n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!}{m^{m}} \cdot \frac{n!}{n^{n}}
$$

Putnam B2, 2004
Problem 9. For positive integers n, let the numbers $c(n)$ be determined by the rules $c(1)=1, c(2 n)=c(n)$, and $c(2 n+1)=(-1)^{n} c(n)$. Find the value of

$$
\sum_{n=1}^{2013} c(n) c(n+2)
$$

Putnam B1, 2013
Problem 10. Show that if $H_{n}=1+\frac{1}{2}+\ldots+\frac{1}{n}$, then

$$
n(n+1)^{1 / n}<n+H_{n}, n>1,
$$

and

$$
(n-1) n^{-1 /(n-1)}<n-H_{n}, n>2 .
$$

Problem 11. Let n be a positive integer, and let

$$
f_{n}(z)=n+(n-1) z+(n-2) z^{2}+\cdots+z^{n-1} .
$$

Prove that f_{n} has no roots in the closed unit disk $\{z \in \mathbb{C}:|z| \leq 1\}$.
Putnam B2, 2018
Problem 12. Prove that a polynomial with only real roots and all coefficients equal to ± 1 has degree at most 3 .

Inspired by Putnam B6, 1968
Problem 13. Determine all polynomials $P(x)$ such that $P\left(x^{2}+1\right)=(P(x))^{2}+1$, and $P(0)=0$.

Putnam A2, 1971
Problem 14. The three vertices of a triangle of sides a, b and c are lattice points and lie on a circle of radius R. Show that $a b c \geq 2 R$. (Lattice points ar epoints in the Euclidian plane with integral coordinates.)

Putnam A3, 1971
Problem 15. A quadrilateral which can be inscribed in a circle is said to be cyclic. A quadrilateral which can be circumscribed to a circle is said to be circumscribable. Show that if a circumscribable quadrilateral of sides a, b, c, d has area $A=\sqrt{a b c d}$, then it is also cyclic.

Putnam B6, 1970
Problem 16. Let A and B be points on the same branch of the hyperbola $x y=1$. Suppose that P is a point lying between A and B on this hyperbola, such that the area of the triangle $A P B$ is as large as possible. Show that the region bounded by the hyperbola and the chord $A P$ has the same area as the region bounded by the hyperbola and the chord $P B$.

